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Abstract

This work is devoted to the numerical simulation of Shallow Water Equations using Runge-
Kutta Discontinuous Galerkin methods. Such methods were implemented in the framework
of adaptive mesh refinement method using a block-based approach. The space and time dis-
cretization using the Runge-Kutta Discontinuous Galerkin approach is applied to nonlinear
hyperbolic Shallow Water Equations. Increasing the order of approximation, spurious oscilla-
tions appear and are addressed using moment limiters. Finally, the solver is validated with
a one-dimensional dam-break problem and its behavior is tested solving a two-dimensional
benchmark.

Keywords: Discontinuous Galerkin method, Shallow Water Equations, Moment limiter, Non-
conformal mesh.

1 Introduction

This work is developed in the framework of the interaction between the flow of water in sandy
beaches and the free surface flow above the sand. Simulating the flow of groundwater has been
done by Clement in 2021 [1] using the adaptive Discontinuous Galerkin method to solve Richards’
equation. The present work aims at developing the hyperbolic part which will be coupled to the
parabolic one.

The free surface flow over sandy beaches will be modelled using the Shallow Water Equa-
tions (SWE). They are derived by considering the depth-averaged three-dimensional incompress-
ible Navier-Stokes Equations, assuming hydrostatic pressure distribution and neglecting vertical
acceleration and viscous effects [2, 3, 4].

Spacial approximation is done using Discontinuous Galerkin (DG) methods. DG methods
combine the background of Finite Element methods and Finite Volume methods, since a weak
problem is solved in a Sobolev space and the solution is approximated with discontinuous polyno-
mials. Moreover in the context of hyperbolic problems, numerical fluxes are approximated taking
into account the physics of the problem. Due to the discontinuous approximation, the DG meth-
ods are well adapted to non-conformal meshing. As in Finite Volume methods, increasing the DG
space approximation order introduces spurious oscillations of the numerical solutions. To counter
this unwanted effect, slope limiting [5] and moment limiting [6] can be used.

DG methods were introduced in 1989 by Cockburn [5] in the scope of conservative laws and
were extended to more precisely convection-dominated problems in 2001 [7]. More recently such
methods were broadly used to solve SWE [8, 9, 10, 11].

The time discretization is performed using explicit Runge-Kutta (RK) method. Explicit RK
method [12] is well suited for DG methods, because the order can be increased easily. The time
adaptation is part of the global hp-adaptation were the time order follows the polynomial approx-
imation [7].

The main purpose of this work is to implement a Runge-Kutta Discontinuous Galerkin (RKDG)
solver using a block based adaptive mesh refinement technique (BB-AMR) [1, 13]. This paper is
organized as follows. In Section 2, we recall the expression of SWE in 2D with bathymetry source
term. In Section 3, we detail the space and time discretization of RKDG methods and then we
add the hydrostatic reconstruction to ensure the well balanced property. Finally we introduce the
moment limiter to cancel spurious oscillations. In Section 4, a one-dimensional dam-break problem
is performed to validate the solver and its behavior is tested solving a two-dimensional benchmark.
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2 Governing equations

Let us consider an open domain Ω, a subset of R2, and consider T > 0 be the simulation time.
The gravitational acceleration is denoted by g and z : Ω → R is a smooth function representing
the bathymetry. The SWE can be written as follows:{

∂tU +∇ ·G(U) = S(U, z) in Ω×]0, T [,

Initial and Boundary conditions,
(1)

where U := (ζ,q) : Ω × [0, T [→ R3 are the conservatives variables, ζ is the (scalar-valued) water
depth, u = (u, v) is the horizontal velocity and q = (qx, qy) = (ζu, ζv) is the horizontal discharge.
Moreover the flux function G and the source trem S are expressed:

G(U) :=


qx qy

q2x
ζ

+ g
ζ2

2

qxqy
ζ

qxqy
ζ

q2y
ζ

+ g
ζ2

2

 ; S(U, z) :=

 0
−gζ∂xz
−gζ∂yz

 .

This problem will be solved numerically using RKDG methods.

3 Runge-Kutta Discontinuous Galerkin approach

In this section the space and time discrezation are detailed and then hydrostatic reconstruction
and limiting procedure are explained.

3.1 Space discretization

Let Eh be a mesh composed of quadrilateral and triangular elements not necessarily conformal.
For all E ∈ Eh. We define hE the diameter of the element E ∈ Eh as the ratio between its surface
and perimeter.

The set of all open faces of all elements E ∈ Eh is denoted by Fh. Moreover, we can define two
subsets of Fh, F∂

h for the boundary faces and F in
h for the interior faces:

F∂
h :=

⋃
F∈∂Ω

F and F in
h := Fh\F∂

h .

For a given E ∈ Eh, there exists a set of face FE
h := {F ∈ Fh, F ∈ ∂E}. For all F ∈ FE

h ∩F in
h ,

there exists a neighboring element Er such that E ∩Er = F and we define the normal unit vector
n⃗E,F := (nx, ny)

T pointing from E to Er. For all F ∈ FE
h ∩F∂

h , there exists E∂ a fictitious element
such that E ∩ E∂ = F and we define the normal unit vector n⃗E,F pointing always from E to E∂ .

Firstly the space Pp(E) with p ∈ N and E ∈ Eh is the space of polynomial functions of two
variables over E and of degree p at most. The goal is to find the approximation vector on each
element of Eh, hence the solution space is defined as Pp

h := {v : Ω → R : v|E ∈ Pp(E), ∀E ∈ Eh}.
Equations (1) are multiplied by a test function φh ∈ [Ph(E)]3, then they are integrated over E

and finally Green’s formula is applied. It gives the continuous-in-time space approximation :

Find Uh := (ζh, (qx)h, (qy)h) ∈ [Ph(E)]3 such that ∀t ∈]0, T [, ∀E ∈ Eh and ∀φh ∈ [Ph(E)]3,
∫
E

φh
∂Uh

∂t
−
∫
E

∇φh : G(Uh)
t +

∑
F∈FE

h

∫
F

φhĜF (Uh) =

∫
E

φhS(Uh, zh)

Initial condition,

(2)

where zh is the projection of the bathymetry z onto the DG space and ĜF is the numerical flux
across F . The numerical flux is defined as follows:
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∀F ∈ Fh,∀(x, y) ∈ F,

ĜF (Uh)(x, y) =


G̃

(
Uh|E(x, y), Uh|Er

(x, y), n⃗E,F

)
, if F ∈ F in

h

G̃

(
Uh|E(x, y), Uh|E∂

(x, y), n⃗E,F

)
, if F ∈ F∂

h

(3)

where G̃ is the numerical flux function independent of the face. Uh|E∂
(x, y) is used to enforce

boundary conditions weakly through the numerical fluxes. Moreover G̃ has to be conservative and
consistent. In this work, the global Lax-Friedrich approximation is used to evaluate G̃ at every
F ∈ Fh or the Godunov scheme solving a Riemann problem at the interface.

We take Pp
h as DG space, so Uh and φh can be expressed as a linear combination of polynomials.

There exist many choices for the polynomials basis, monomial, Lagrange, Dubiner [14], or Legendre
basis. In this work the Legendre (resp. Dubiner) polynomials basis is used for quadrilateral (resp.
triangular) elements. Those basis are orthogonal and hold the hierarchism property, i.e. mass
matrix is diagonal and the polynomial degree can be increased or decreased effortlessly.

Classically in Finite Element methods each element is mapped on a reference element Ê with
local variables ξ and η. The polynomial approximation is defined on this reference element. For
instance for quadrilateral elements a tensor-product basis is constructed using the Legendre poly-
nomial basis.

Uh|Ê(ξ, η, t) =
p∑

i=1

p∑
j=1

(UÊ)i,j(t)Pi(ξ)Pj(η), ∀(ξ, η, t) ∈ Ê×]0, T [ (4)

where P is the Legendre polynomial vector which order is lower than p. UÊ ∈ [R3](p+1)×(p+1) is
the local expansion coefficient matrix with (UÊ)i,j = ((ζÊ)i,j , (qxÊ)i,j , (qyÊ)i,j).

In practice, for all element E, the coefficients of UÊ are stored in a unique vector U⃗Ê ∈ [R3]N

withN = (p+1)2 the number of degree of freedom per element per unknown. Moreover, polynomial
basis functions are stored the same way in a vector Φ. Hence it gives

Uh|Ê(ξ, η, t) = Φ(ξ, η) · U⃗Ê(t), ∀(ξ, η, t) ∈ Ê×]0, T [. (5)

We obtain a discrete form of the variational problem (2) for an element E and its corresponding
Ê: ∫

Ê

Φ⊗ Φ
∂U⃗Ê

∂t
−
∫
Ê

∇Φ : G(Uh)
t +

∑
F̂∈FÊ

h

∫
F̂

ΦĜF̂ (Uh) =

∫
Ê

ΦS(Uh, zh). (6)

Then by inverting the mass matrix in (6), which is diagonal thanks to orthogonal chosen basis, we
can write:

Solve ∀E ∈ Eh,
dU⃗Ê

dt
= Hh(U⃗Ê) (7)

where Hh : [R3]N → [R3]N .

3.2 Time discretization

The time derivative in (7) is discretized using the explicit Runge-Kutta method of order q, consid-
ering (tk)k∈N a sequence of discrete times beginning at t0 = 0 and (∆t)k := tk+1− tk the (k+1)-th
time step. Given an initial condition U0, the RK method reads to compute the solution at tk+1,
using the solution Uk at tk and some sub-iterate solutions between tk and tk+1:

U⃗k+1

Ê
= U⃗k

Ê
+ (∆t)k

q∑
i=1

biki, (8)

with

{
k1 = Hh(U⃗

k
Ê
)

ki = Hh(U⃗
k
Ê
+ (∆t)k

∑i−1
j=1 ai,jkj)

. (9)
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Coefficients ai,j and bi can be found in [7]. In order to reach the same order of accuracy in space
and time we use a Runge-Kutta method of order p+ 1.

The time step is determined according to a CFL condition [7]:

max
E∈Eh

(
λk
E

hE

)
(∆t)k ≤ 1

2p+ 1
,

with

λk
E := max

F∈∂E

(
max

(x,y)∈F

((qx
ζ
nx +

qy
ζ
ny ±

√
gζ

)
(x, y, tk)

))
.

3.3 Well balanced property

Solving SWE with bathymetry with (2) does not preserve equilibrium states. The RKDG method
is not well-balanced. It generates some numerical waves that decrease the accuracy of the approx-
imation scheme, because of an incompatibility between the numerical flux and the discretization
of the source term.

The lake at rest equilibrium needs to be conserved, therefore the problem (1) is modified, hence
(2), in order to obtain a well-balanced RKDG scheme [10].

Firstly it can be that noticed we cannot have ζh + z ≡ C because z does not belong to Pp
h.

Therefore, we need to find zh ∈ Pp
h, the L2-projection of z onto Pp

h such that ζh + zh ≡ C.
The well-balanced RKDG formulation now reads:∫

E

φh
∂Uh

∂t
−
∫
E

∇φh : G(Uh)
t +

∑
F∈FE

h

∫
F

φh

(
ĜF (U

⋄
h)− δF (Uh, zh)

)
=

∫
E

φhS(Uh, zh) (10)

with U⋄
h := (ζ⋄h,q

⋄
h) the modified flux. For all F ∈ Fh we define:

ζ⋄h|E :=

{
max

(
0, ζh|E −max(zh|Er − zh|E , 0)

)
, if F ∈ F in

h

ζ|E , if F ∈ F∂
h

, q⋄
h := ζ⋄h|E

q⋄
h|E

ζh|E
(11)

The additional source term on the interfaces is defined:

δF (Uh, zh) :=


0

g

2
(ζ⋄h|2E − ζh|2E)nx

g

2
(ζ⋄h|2E − ζh|2E)ny

 (12)

The proof that this modification of (2) conserves the equilibrium state can be found in [10].

3.4 Limiting procedure

Limiting methods to reduce spurious oscillations are commonly used in the framework of solving
SWE using RKDG method [7, 10, 11]. Unfortunately those procedures are not general and can
not be applied to a general mesh.

In this work the method we described has been introduced by Krivodonova [6] in 2007 and is
applied only to non-conformal mesh formed with quadrilateral elements, in this case, the mapping
between elements and reference elements is linear. Nevertheless there exists a moment limiter [14]
that can be applied to triangular elements.

Moment limiting does not directly reduce to first order polynomial in the spurious oscillated
area. It begins by limiting the highest moments and only if they need to be limited, lower moments
are limited. Using this procedure, the benefit of a DG approach is preserved as much as possible.

For an element E ∈ Eh, for all F ∈ FE
h , the procedure consists in comparing the i-th (resp.

j-th) derivative of Uh|E with the finite difference between the (i−1)-th (resp. (j−1)-th) derivative
of Uh|E and Uh|Er

in the direction ξ (resp. η). The estimation of (UÊ)
k
i,j is given by:

(UÊ)
k
i,j ≈

(UÊr
)ki−1,j − (UÊ)

k
i−1,j

2
√
4i2 − 1

in the direction ξ, (13)
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and

(UÊ)
k
i,j ≈

(UÊr
)ki,j−1 − (UÊ)

k
i,j−1

2
√

4j2 − 1
in the direction η. (14)

Further information about these approximations can be found in [6].
We are solving a non-linear system, therefore moment limiting can’t be applied directly to

conserved variables because it leads to spurious oscillations near discontinuities. This phenomenon
is observed in [6, 15]. To achieve a better moment limiter, characteristic field decomposition needs
to be achieved. That is to say we do not limit (UÊ)

k
i,j but (CÊ)

k
i,j := L(UÊ)

k
i,j where L is the

matrix of left eigenvectors of the Jacobian of (1). L is evaluated using an arithmetic mean of UhE

and UhEr
defined as

UhE =
1

sE

∫
E

UhdS, UhEr
=

1

sEr

∫
Er

UhdS.

At each step of the limiting procedure, for all F ∈ F in
h , (ĈÊ)

k
i,j and (ĈÊr

)ki,j are defined
analogously by

(ĈÊ)
k
i,j :=


m
(
(CÊ)

k
i,j , αi

(
(CÊr

)ki−1,j − (CÊ)
k
i−1,j

))
, if n⃗Ê,F · (0, 1) = 0 and i > 0

m
(
(CÊ)

k
i,j , αj

(
(CÊr

)ki,j−1 − (CÊ)
k
i,j−1

))
, if n⃗Ê,F · (1, 0) = 0 and j > 0

where the function m is defined by:

∀ a1, a2 ∈ R3, m(a1, a2) :=

minmod
(
(a1)1, (a2)1

)
minmod

(
(a1)2, (a2)2

)
minmod

(
(a1)3, (a2)3

)
 (15)

with

∀ a, b ∈ R, minmod(a, b) =

{
sgn(a)min(|a|, |b|) , if sgn(a)=sgn(b)

0 , otherwise
.

The choice of αi and αj is done according to (13), (14) and because we do not allow (CÊ)
k
i,j to

exceed 2(2i− 1) times the lower derivative in ξ direction and 2(2j − 1) times the lower derivative
in η direction. It gives :

1

2
√
4n2 − 1

≤ αn ≤
√

2n− 1

2n+ 1
.

The left bound of αn gives the most diffusive limiter and the right bound gives the least diffusive.

Once the limiting step is done we recover limited conserved variables by multiplying (ĈÊ)
k
i,j

by L−1. The whole limiting procedure is described in [6].

4 Numerical validation

In this section the RKDG method is validated using a one-dimensional dam break and its behavior
with a block-based adaptive mesh refinement are tested.

4.1 Dam break on a wet domain

The dam break problem is a classical case in the shallow water community, it was introduced first
in [16]. This is a classical Riemann problem. Here we consider an ideal dam break on a wet domain,
i.e. the dam break is instantaneous, the bottom is flat and frictionless. The analytical solution is
obtained thanks to the characteristics method and it can be found in [17, 16].

Here we consider a one-dimensional problem on a domain Ω = [−10, 10] and t ∈]0, 2]. The
initial condition considered for this problem is the following Riemann problem:

∀x ∈ Ω, ζ(x, 0) =

{
1.8 , if x < 0

0.5 , if x ≥ 0
, q(x, 0) = 0. (16)
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Figure 1: Water depth profile (left) and a zoom around the discontinuity (right) for the dam-break
on a wet domain at t = 2s

Figure 2: Water depth and depth contour with velocity field for the partial dam-break at t = 7.2s

The approximated solution of this problem is obtained using the RKDG method, exposed before
with the moment limiting parameter α set to be the least diffusive. One can see in Figure 1 the
solution computed with a mesh composed of 160 elements and a Runge-Kutta method of order
p+ 1 with p the polynomial degree (p = 0, 1 and 3). On the left, there are the analytical solution
on solid line and the approached solution with cross markers. It can be noticed that they overlap
correctly on the whole domain but there is still diffusion near discontinuities. A zoom-in displayed
on the right side of Figure 1, it can be observed that piecewise constant approximation (FV) is the
most diffusive. The piecewise linear approximation (DG P1) without moment limiter introduces
spurious oscillations and finally DG P1 and P3 with moment limiter are less diffusive than FV and
does not oscillate around discontinuity. The higher order is the least diffusive.

4.2 Two-dimensional partial dam-break

This numerical validation allows us to test our solver on real 2D conditions. It is used to validate
FV solver in [18, 19] and in [11] to validate his DG solver. This test case is an asymmetrical breach
in a dam full of water. The computational domain Ω = [0, 200] × [0, 200] and T = 7.2s. The
breach is 75m long and located at 30m from the upper wall and 95m from the lower wall. The
problem geometry can be seen in Figure 2. At the initial time, the dam is full of water before the
breach ζl = 10m and the is water after the dam ζr = 5m. Boundary conditions are all considered
reflective.

The computation of the approached solution of this problem is done using the RKDG solver
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Figure 3: Water depth cross-section at y = 132.5m, i.e. in the middle of the breach, at t = 6s

exposed before with moment limiting set to be the most diffusive. In this computation, the solution
is considered as a discontinuous polynomial of degree one (P1), hence the time integration is done
with a Rung-Kutta method of order 2. In Figure 2 the water depth elevation is displayed on the
left and it is in good agreement with results in [19]. Moreover, it can be seen that discontinuities
are better captured using the RKDG solver. Moreover, because the solver is implemented on a
non-conformal mesher to speed up computation we used a mesh refinement technique based on the
gradient of ζ. It can be seen in Figure 2 that element size is not constant over the computational
domain. The behavior of the approximated velocity field is as expected, there is clearly a flow from
right to left with eddies around corners of the breach. In Figure 3 the water depth elevation is
displayed without slope limiter (solid line), with the least diffusive slope limiter (dotted line) and
with the most diffusive slope limiter (dashed line). In can be noticed that slope limiter behave as
expected, it cancels oscillations near discontinuities and is more or less diffusive according to the
parameter αn.

5 Conclusion

In this paper Shallow Water Equations with bathymetry are numerically solved using Rung-Kutta
Discontinuous Galerkin methods. Moreover in order to increase robustness of those methods,
hydrostatic reconstruction and moment limiting are added. This whole solver is implemented in a
way to be used with an adaptive mesh refinement method using a block-based approach. In order
to validate the numerical simulation of Shallow Water Equations, a one-dimensional dam break
problem displays the benefit of using RKDG methods with moment limiting compared to Finite
Volume methods. A two-dimensional dam break problem exhibits the behavior of adaptive RKDG
methods.
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