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Abstract

The immersed boundary (IB) method is an approach in the computational fluid dynamics
in which complex geometry conforming meshes are replaced by simple ones and the true
simulated geometry is projected onto the simple mesh by a scalar field and adjustment of
governing equations. Such an approach is particularly advantageous in topology optimizations
(TO) where it allows for substantial speed-up since a single mesh can be used for all the
tested topologies. In our previous work, we linked our custom IB variant, the hybrid fictitious
domain-immersed boundary method (HFDIB), with a TO framework and successfully carried
out an optimization under laminar flow conditions. However, to allow for optimizations of real-
life components, the IB approach needs to be coupled with an affordable turbulence modeling.
In this contribution, we focus on extending the HFDIB approach by the possibility to perform
Reynolds-averaged simulations (RAS). In particular, we implemented the k − ω turbulence
model and wall functions for closure variables and velocity.
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1 Introduction

With the growing available computational power, engineers more and more often utilize compu-
tational fluid dynamics (CFD) to design and test new components and devices. It is particularly
advantageous to use CFD in topology optimizations (TO) where it can be easily connected with
various optimization algorithms [1]. However, the speed, accuracy and stability of every CFD simu-
lation relies on the quality of the computational mesh and mesh generation (meshing) is considered
to be one of the biggest bottlenecks of CFD [2].

A way to circumvent the mesh-related difficulties is to use the immersed boundary (IB) method
where the component geometry is not represented by the mesh conformation. Instead, a simple
mesh is used and the geometry is projected onto it using a scalar field (λ) based on which the flow
governing equations are adjusted, see, e.g., [3]. Utilization of a simple mesh significantly reduces
the time spent on meshing and eliminates mesh quality related problems. Furthermore, usage of
an IB method in TO allows for a substantial speed-up since the mesh can be generated only once
and changes in topology are represented by changes in the λ field [1, 4].

Still, the vast majority of IB applications reported in the literature is performed in such flow
regimes that the flow boundary layer is resolved [5]. Nevertheless, optimizations of components in
real-life conditions requires the IB method to be compatible with affordable turbulence modeling
approaches, e.g., Reynolds-averaged simulations (RAS), in which the boundary layer is commonly
modeled via wall functions. So far, there were several attempts on coupling of an IB method
with RAS [2, 5, 6, 7] showing acceptable accuracy yet not sufficient robustness for utilization in
automated topology optimization.

In this work, we focus on development of a robust and general implementation of the RAS
approach into our custom IB method variant, the hybrid fictitious immersed boundary method
(HFDIB), see [3]. In Kub́ıčková and Isoz [8], we have already linked the HFDIB method to a TO
framework to conduct a laminar TO. With the newly proposed HFDIB-RAS approach, we aim to
perform TO under turbulent flow conditions. In the present state, the HFDIB-RAS approach is a
combination of the HFDIB method, the k-ω turbulence model and wall functions for the closure
variables (k and ω) and for velocity. The implementation is done in OpenFOAM [9] and the
framework is general and allows for extension by any one or two equation RAS model. Finally,
the method behavior is presented on several verification tests and the results show a qualitative
agreement with standard geometry-conforming simulations.
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2 Methods

Let Ω ⊂ R3 be a finite volume discretization of an open, bounded, and connected computational
domain, see Fig. 1-a). Based on the simulated component geometry, we can divide Ω into three
subdomains

Ω = Ωs ∪ Ωf ∪ Ωsf (1)

where Ωs represents a part of the domain fully immersed in solid, Ωf is a part of Ω immersed in
fluid and Ωsf comprises cells that are intersected by the fluid-solid interface, see Fig. 1-b). In the
HFDIB-RAS approach, the division in (1) is represented by a scalar field λ, see Fig. 1-c). In each
cell ΩP ⊂ Ω, the λ field is defined as

λ =


0 if ΩP ⊂ Ωf

1 if ΩP ⊂ Ωs

λ̃ ∈ (0, 1) if ΩP ⊂ Ωsf

, λ̃ = 0.5

1− tanh

(
y⊥

V
1
3

) (2)

where V is the average cell volume in Ω and y⊥ is the signed perpendicular distance from P , the
center of ΩP , to the solid surface.
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Figure 1: a) Uniform orthogonal mesh. b) Overlay of an immersed body (dark) and the mesh
from a) with indicated division of Ω as is referred in (1). c) Representation of the immersed body
geometry by a scalar field λ. d) Division of the mesh cells according to the influence of the solid
and the fluid phase.

The λ field carries purely geometric information and for the purposes of RAS modeling and
adjustment of governing equations, we further divide the cells in Ω into three disjoint sets based
on the extent of influence of the two phases, see Fig. 1-d). The groups are (i) in-solid cells that
have λ ≥ 1/2 and are affected only by the solid phase, (ii) free-stream cells that are affected by
the fluid flow only and are defined as cells that have λ = 0 and none of their vertex neighbors is
an in-solid cell and (iii) boundary cells where a combined effect of the two phases is present. The
boundary cells are either cells with λ ∈ (0, 1/2) or cells with λ = 0 and an in-solid cell as a vertex
neighbor.

The turbulent flow in Ω is described by Reynolds averaged Navier-Stokes equations that for an
incompressible and isothermal flow of a Newtonian fluid have the form of

M(u) = −∇p̃+ fib

∇ · u = 0
,

M(u) = ∇ · (u⊗ u)−∇ ·
[
νeff

(
∇u+∇uT

)]
fib = α(λ) ·

(
M(uib) +∇p̃

) (3)
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where p̃ and u are averaged kinematic pressure and velocity, respectively. Note that, the momentum
conservation equation is extended by an additional force term, fib, which enforces the prescribed
velocity boundary condition at the IB. The scope of effect of the fib is determined by a scalar field
α where α = 1 for in-solid and boundary cells and α = 0 for free-stream cells. The values of fib

are computed from immersed velocity values, uib, which are enforced in the in-solid and boundary
cells by an iterative solution process.

In RAS combined with the Boussinesq hypothesis, the effect of turbulence in (3) is accounted for
by effective viscosity, νeff , which is computed as νeff = ν+νt where ν is the fluid viscosity and νt is
turbulent viscosity. In general, the turbulent viscosity is computed via turbulence closure models.
In the HFDIB-RAS solver, we chose to implement the k − ω turbulence model by Wilcox [10] in
which νt = k/ω, where k is the turbulent kinetic energy and ω is the specific rate of dissipation of
k. The behavior of the two closure variables, k and ω, is described by conservation equations

N (k) = Qib, N (k) = ∇ · (uk) − ∇ ·
(
νeff,k∇k

)
− Sk, Qib = α(λ) · N (kib)

P(ω) = 0, P(ω) = ∇ · (uω) − ∇ ·
(
νeff,ω∇ω

)
− Sω

(4)

where νeff,k, S
k, νeff,ω and Sω are computed according to Wilcox [10]. Similarly to the momentum

conservation equation, the k conservation equation is extended by an additional source term, Qib.
Its scope of effect is α-dependent and the same as for fib. The values of Qib are computed from
immersed values, kib, which are enforced in the in-solid and boundary cells. For the solution of the
ω conservation equation, the immersed values, ωib are required as well. However, they are enforced
by a direct modification of the system matrix for the purposes of simulation stability [10].

Thus, to enforce the prescribed boundary conditions at the IB, the immersed values are required
to be set prior to the solution of equations (3) and (4). The immersed values in the in-solid cells
are based on the continuum assumption that the u and k goes to zero and ω goes to infinity as we
are getting closer to the wall. Hence, the values in the in-solid cells are set as

uib = 0, kib = 0, ωib = max
Ωsf ∪Ωwall

(ωold) (5)

where Ωwall comprises free-stream cells neighboring geometry-conforming walls and ωold are values
of ω from the previous iteration or the initial guess.

In the boundary cells, the situation is more complicated. In addition to the satisfaction of
the boundary conditions, the boundary cells are responsible for simulation of the fluid boundary
layer, which in more turbulent flows becomes very thin. In standard CFD codes, there are two
approaches to the boundary layer simulation, (i) fully-resolved approach with local mesh refinement
and (ii) modeled approach utilizing wall functions for u, k and ω. In the HFDIB-RAS approach,
we chose to focus on the latter, since we aim to use our solver mainly in optimizations and local
mesh refinement makes the simulations more computationally expensive.

We leverage the standard assumptions utilized in boundary layer modeling. Namely, the de-
scription of the boundary layer via normalized variables [11] u+, k and ω as functions of normalized
perpendicular distance to the wall, y+ [12], which is defined as

y+ =
y⊥uτ

ν
, uτ =

√
τw (6)

where uτ and τw are the friction velocity and the wall shear stress for incompressible flows, re-
spectively, and the normalized variables are defined as

u+ =
ut

uτ
k+ =

k

u2
τ

, ω+ =
νω

u2
τ

(7)

where ut is the velocity component parallel to the wall.
The used wall functions implementation is chosen to be the piece-wise switch-based wall func-

tions in a form similar to the one implemented in OpenFOAM [9]. In particular, the wall functions
are defined separately for viscous sublayer and logarithmic region of the fluid boundary layer.
Switching between the two definitions is based on a constant y+lam, which is defined as the value of
y+ when the two sub-functions intersect. The specific definitions are listed in Tab. 1.

106 Prague, February 22-24, 2023_______________________________________________________________________



variable viscous sublayer (y+ < y+lam) logarithmic region (y+ ≥ y+lam)

u+ y+ 1
κ ln(Ey+)

k+ 2400
C2

ε2

[
1

(y++C)4 + 2y+

C3 − 1
C2

]
Ck

κ ln(y+) +Bk

ω+ 6
β1(y+)2

1

κ
√

Cµy+

Table 1: Wall functions for u+, k+ and ω+ in the form they were implemented. The κ, E, Cε2,
C, Ck, Bk, β1 and Cµ are constant parameters of the k − ω turbulence model, for details see [10].

Commonly, the normalized variables given by the wall functions are used either to prescribe a
Dirichlet boundary condition at the wall or to enforce the values directly in the wall-nearest cells.
In OpenFOAM, the first approach is used for k and the second for ω [9]. Likewise, in HFDIB-RAS,
we use the values of ω+ for direct computation of the immersed values, ωib, via (7). On the other
hand, the values of k+ and u+ are taken as prescribed at the immersed body surface and the
immersed values in the boundary cells, uib and kib, are computed via interpolation between the
value at the surface and values in the free stream.

To perform the interpolation, a local coordinate system for every boundary cell is created firs.
In particular, we need to define normal and tangential directions with respect to the immersed
body surface, see Fig. 2. The normal direction is used to identify interpolation points from the free
stream. The tangential is required for velocity reconstruction since the wall functions can acquire
only tangential velocity component, see (7). Let ΩP be a boundary cell, then, the unit normal
vector (nP ) and the unit tangential vector (tP ) are computed as

nP = − (∇λ)P
∥∇λ∥P

, tP =
ut,P1

∥ut,P1
∥
, ut,P1

= uP1
− (nP · uP1

)nP (8)

where P is the center of ΩP and P1 is the first free-stream interpolation point.

(a)

S

P
P1

P2

nP

IB

solid

fluid

(b)

S

nP

uP1

tP

Figure 2: Local coordinate system for a boundary cell ΩP . (a) Normal vector, nP , center point,
P , surface point, S, and identified free-stream interpolation points. (b) Tangential vector, tP ,
and velocity in the first interpolation point, uP1 , used for its construction.

Utilizing the values from free-stream interpolation points and the surface value given by the
wall functions, we compute the values in the boundary cells either via polynomial or logarithmic
interpolation. The polynomial interpolation is valid if the boundary layer is fully resolved. As
such, it is used for the tangential component of uib and for k when the center of the boundary cell
lies in the viscous sublayer. Furthermore, it is always used to compute the normal component of
uib. For a scalar quantity φ, the polynomial reconstruction of φib is defined as

φib = Ay2⊥ +By⊥ + φS , A =
(φP2

− φP1
) δ1 − (φP1

− φS) δ2
δ1δ2 (δ1 + δ2)

B =
(φP1 − φP2) δ

2
1 + 2 (φP1 − φS) δ1δ2 + (φP1 − φS) δ

2
2

δ1δ2(δ1 + δ2)

(9)

where δ1 is the distance from the surface to the first interpolation point and δ2 the distance between
the first and the second interpolation point.
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The logarithmic interpolation is used for the uib tangential component and k when the center
is located in the logarithmic region. It is defined as

φib = A ln (By⊥ + 1) + φS , A =
φP1

− φS

Bδ1 + 1
, B =


Euτ

ν
if φ = ut

uτ

ν
if φ = k

(10)

where the values for B were taken from the definitions of wall functions for the logarithmic region.
In order to enforce the immersed values in in-solid and boundary cells, HFDIB-RAS uses a

modified solver iteration loop. The modifications on the SIMPLE solver connected with the k− ω
turbulence model are depicted in Fig. 3. The iteration loop starts with computation of uib, using
values from the previous iteration. Then, there is the momentum predictor step (3)1 after which
the algorithm enters a sub-loop over the pressure correction (3)2, which is run until the difference
between u and uib is sufficiently small, i.e. smaller then an arbitrary small number Ξ > 0.

simulation

end

START

STOP
YES

compute uib

NO

momentum predictor (3)1

pressure correction from (3)2

is
max

(
α|uib − u|

)
< Ξ

NO

u
=

u
+

α
(u

ib
−
u
)

discretize ω equation (4)2
YES

compute ωib &
matrix modification

solve ω equation (4)2

compute kib

solve k equation (4)1

is
max

(
α|kib − k|

)
< Ξ

YES NO k
=

k
+
α
(k

ib
−

k
)

S
IM

P
L
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op

tu
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len
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Figure 3: SIMPLE loop connected to a k − ω turbulence model with modifications done for the
HFDIB-RAS solver. The Ξ > 0 is an arbitrary small number.

Next, the algorithm enters the turbulence model loop, where the first step is the discretization
of the ω equation (4)2. Then the values of ωib are computed and the system matrix from the
previous step is modified via tools available in OpenFOAM [9]. Subsequently, the algorithm solves
for ω, computes the kib values and enters another sub-loop over the solution of the k equation (4)1.
Similarly to the pressure correction loop, the second sub-loop continues until the difference between
kib and k is small enough. Finally, the algorithm checks the termination conditions and either ends
the simulation or continues with the SIMPLE loop once again.
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3 Results

Since the HFDIB-RAS development is an ongoing research, the capabilities of the HFDIB-RAS
method are showed on several simple verification tests designed to show the research progress and
not to represent a robust verification. In all the tests, we compared results from our HFDIB-RAS
solver and from the standard OpenFOAM simpleFoam solver [9]. Every test was designed in such
a way that it was possible to create two almost identical meshes, one geometry-conforming for
simpleFoam and one for the HFDIB-RAS method where the geometry was represented by the
scalar field λ. The meshes used in four of these tests are depicted in the Fig. 4.

(a)

main flow direction x

(b) 1.0λ [−]0.0

(c)

(d)

z

Figure 4: Computational meshes used in verification tests. On the left, there are
geometry-conforming meshes and on the right, meshes used for HFDIB-RAS with the geometry
indicated by the λ field.

With every mesh pair, we ran a number of simulations among which we changed the flow
Reynolds number in a way that it varied from 101 to 106. First, we ran the verification tests with
the meshes showed in Fig. 4-a) to see how the HFDIB-RAS solver behavior scales with the flow
Reynolds number. The resulting u and νt profiles for the Re = {102, 104, 106} are compared in
Fig. 5. Then, to test the generality of the local coordinate system creation, we ran simulations with
the bent geometries, see Fig. 4-b)-c)-d). Comparison of u and νt profiles for Re = 106 is depicted
in Fig. 6.

From the results depicted in Fig. 5, it can be seen that qualitatively, the HFDIB-RAS solver
scales well with growing Reynolds number. However, there is problem with the solution accuracy
that is visible the most on the subplot with νt profiles for Re = 106. The profiles from simulations
with the bent geometries, depicted in Fig. 6, show a similar behavior to the profiles in Fig. 5.
Hence, the creation of the local coordinate system is general enough, but the problems apparent
from the results in Fig. 5 have non-negligible influence, i.e., the profiles are qualitatively accurate
yet shifted in the absolute values. In the simulations with the non-symmetric mesh, see Fig. 4-d),
the propagation of the absolute error even leads to a shift of the profiles along the domain itself.
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Figure 5: Comparison of u and νt profiles acquired from simulations for Re = {102, 104, 106} and
using the meshes depicted in Fig. 4-a). The z̃ is a normalized distance along the z-line depicted in
Fig. 4 where z̃ = [z −min(zsF)]/[max(zsF)−min(zsF)].
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Figure 6: Comparison of u and νt profiles acquired from simulations for Re = 106 and using the
meshes depicted in Fig. 4-b)-c)-d).
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4 Conclusion

In this contribution, we presented a research progress in development of a HFDIB-RAS solver
created as a connection of our custom HFDIB method and RAS turbulence modeling approach. In
particular, we implemented a modified version of the Reynolds averaged Navier-Stokes equations,
the k − ω turbulence closure model and switch-based wall functions. The HFDIB-RAS method
behavior is presented on results from verification tests that showed a good qualitative agreement
with a standard CFD solver. Nevertheless, there are non-negligible problems with the solution
accuracy that shall be solved in future method development. Still, the shown method robustness
with respect to bent geometries hints at its future applicability for topology optimizations of
components under real-life conditions.
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