
MODEL ORDER REDUCTION FOR PARTICLE-LADEN FLOWS:

SYSTEMSWITH ROTATIONS AND DISCRETE TRANSPORT OPERATORS
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Abstract

In the present work, we concentrate on particle-laden flows as an example of industry-relevant
transport-dominated systems. Our previously-developed framework for data-driven model
order reduction (MOR) of such systems, the shifted proper orthogonal decomposition with
interpolation via artificial neural networks, is further extended by improving the handling
of general transport operators. First, even with intrusive MOR approaches, the underlying
numerical solvers can provide only discrete realizations of transports linked to the movement
of individual particles in the system. On the other hand, our MOR methodology requires
continuous transport operators. Thus, the original framework was extended by the possibility
to reconstruct continuous approximations of known discrete transports via another artificial
neural network. Second, the treatment of rotation-comprising transports was significantly
improved.

Keywords: Model order reduction, shifted POD, artificial neural networks, CFD-DEM, Open-
FOAM.

1 Introduction

Particle-laden flows, i.e., flows comprising fluids and dispersed solid particles, are pervasive in
scientific and engineering practice. However, these flows often exhibit complex coupling between
the phases, which results in their high sensitivity to initial conditions and system parameters.
Consequently, simulations of these flows tend to be complicated. The approaches to simulations of
particle-laden flows can be divided into two main categories [1]. The first one, Eulerian-Eulerian,
describes both the fluid and and the dispersed solid phase as two interpenetrating Eulerian continua
and requires a solution of modified Navier-Stokes equations for those continua. This approach
has relatively low computational costs and allows for simulations of large systems; however, it
requires great number of empirical parameters in order to provide results of sufficient accuracy
(e.g. [2]). In the second, Eulerian-Lagrangian, approach, only the fluid is represented as a Eulerian
continuum and described via Navier-Stokes equations. In the solid phase, each particle is processed
individually in its own Lagrangian coordinate system. Eulerian-Lagrangian methods generally
require less parameters than Eulerian-Eulerian approaches. However, they pose greater demands
on computational time [3].

These computational demands of Eulerian-Lagrangian methods for particle-laden flows can
be problematic when industrial practice calls for optimization or system control based on these
models. To solve this issue, various data-driven methods of model order reduction (MOR) have
been developed, see e.g. [4]. In computational fluid mechanics, numerous MOR approaches rely on
modal decomposition of the original system data [5]. One such approach is the proper orthogonal
decomposition (POD) combined with the Galerkin projection to obtain a reduced order model
(ROM) and discrete empirical interpolation method (DEIM) for treatment of system non-linearities
[6]. However, any projection method requires the original system (full order model, FOM) to
be described by a single set of partial differential equations, which is not the case of Eulerian-
Lagrangian models for particle-laden flows. Therefore, another approach to ROM construction
must be used.

Furthermore, the principle of mode-based methods and POD itself is to use the solution matrix
Y = (yij) = (y(xi, tj)), Y ∈ Rm×n and decompose it as [7]

Y ≈ Y ℓ =
ℓ∑

r=1

ψr ⊗ ηr = ΨℓHℓ , Ψℓ = [ψ1, . . . , ψℓ] ∈ Rm×ℓ , Hℓ = [η1, . . . , ηn] ∈ Rℓ×n , (1)
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where {ψr}ℓr=1 are stationary spatial modes, toposes, and {ηr}ℓr=1 are their time dependent ampli-
tudes, chronoses. A single mode is then represented as a dyadic pair ψr(x) ⊗ ηr(t) and the whole
matrix is approximated as a sum of the first ℓ modes, ℓ≪ n.

However, particle-laden flows are usually transport-dominated and their behavior cannot be
described by a superposition of just a few stationary modes, as all of their significant spatial
structures are moving. Consequently, a great number of modes is needed for a sufficiently accurate
approximation. Several approaches to solve this issue have been proposed, see e.g. [8, 9, 10, 11].
Usually, these methods use a time dependent shift to compensate for the transport. However, their
application disallows for a straightforward application of projection-based MOR methods.

In the present work, we are interested in data-driven model order reduction of Eulerian-
Lagrangian models of particle-laden flows. First, a low-rank approximation of the original data is
constructed via the shifted orthogonal decomposition (sPOD), a method able to treat systems with
multiple different transports by sorting the data into several co-moving frames of reference [8, 12].
Second, similarly to our previous work [13], the final reduced order model is prepared utilizing
artificial neural networks (ANNs) instead of the standard Galerkin projection, which is not appli-
cable.

The novelty of our work lies in extending the sPOD algorithm for treatment of general transport
operators. First, while the theoretical treatment of operators comprising rotations remains as
presented in [12], in practice, they require further modifications to the original method. Second, for
the cases in which only discrete versions of the transport operators are known, another interpolating
ANN was included in the final ROM.

The work is structured as follows. First, we outline the basic principles of shifted POD. Second,
we discuss the treatment of systems with rotations. Next, we explain the final ROM structure,
including ANN-based reconstruction of transport operators. In the result section, we present
several examples of MOR of data generated by our in-house CFD-DEM code openHFDIB-DEM [14,
15].

2 Methods

Generally, MOR aims to reduce the computational costs of the system by reducing the number of
its degrees of freedom (DoFs). Commonly, a mathematical model is defined by partial differential
equations, which after spatial discretization via an arbitrary method (FVM, FEM, etc.) yield a
system of ordinary differential equations that can be expressed in a form

ẏ = Ay + b(t, y) , ∀t ∈ I , y(0) = y0 , (2)

where y is the variable in question, Ay represents the linear part of the system and b(t, y) its
non-linearities. From now on, let us only consider this spatially discretized system and let us refer
to it as to the full order model (FOM). The exact number of its DoFs depends on the specific
problem and applied discretization, but in practice the number tends to go up to millions.

Our approach to MOR is an a-posteriori one, i.e., it is necessary to have available the solution,
or snapshot, matrix Y ∈ Rm×n, where m is the number of spatial degrees of freedom and n is the
number of saved times. For most a-posteriori methods, a low rank approximation of Y is computed
first and then is used to generate a low-dimensional surrogate of (2).

A widely-used method for constructing a low rank approximation of Y is the proper orthogonal
decomposition (POD), which technically corresponds to the truncated singular value decomposition
(SVD) of the snapshot matrix, cf. (1) and

Y ≈ Y ℓ = ΨℓHℓ, Hℓ = Σℓ(Xℓ)T ∈ Rℓ×n , Σℓ = diag (σ1, . . . , σℓ) , X
ℓ ∈ Rn×ℓ . (3)

The matrices Ψℓ and Xℓ originate from SVD and as such are composed of orthonormal column
vectors. Hence, the relative importance of the modes is stored in their corresponding singular values
in Σ, which are gradually decreasing. Therefore, based on the required approximation accuracy, it
is possible to choose an ℓ ≪ n and to construct the approximated matrix Y ℓ, rank (Y ℓ) = ℓ as a
sum of the first ℓ modes.

Shifted proper orthogonal decomposition While POD is purely data-driven and no informa-
tion on (2) is required for the construction of Y ℓ, it approximates the matrix Y as a superposition of

TOPICAL PROBLEMS OF FLUID MECHANICS 97_______________________________________________________________________



(a)

T
(b)

T

(c)

W/2 ∆x

L/2

∆y

S

Figure 1: Data in the corners of the domain get lost during rotation (a) unless the domain is
extended beforehand (b). The length of the extended domain is calculated based on the parameters
in (c). S represents the axis of rotation.

ℓ stationary toposes. Thus, it is ineffective for systems with dominant transport, in which the po-
sition of their principal spatial structures changes in time. Consequently, a large number of modes
is needed for an acceptably accurate approximation. However, the transport can be compensated
with a time dependent shift T −∆t

(f(t, x)) := f(t, x+∆t). Such, shifted POD is significantly more
effective for transport-dominated systems and a significantly smaller number of modes is sufficient.
For illustration, see for example our previous contribution [13].

Taking into account that there might be multiple different transports in the system, the sought
snapshot matrix approximation is given by

Y ℓ = (yℓ(xi, tj)) =

Nf∑
k=1

T ∆t
k

(
ℓk∑
r=1

ψk
r ⊗ ηkr

)
=

Nf∑
k=1

T ∆t
k

(
Ψℓk

k H
ℓk
k

)
, (4)

where Nf is the number of frames of reference.
The shifted proper orthogonal decomposition (sPOD) by Reiss et al. [8] used in this work

builds on this idea and introduces an algorithm that is able to sort the data into multiple frames
of reference. The exact algorithm is rigorously described in [12]; however, it is outside the scope
of this work.

Implementation of shifts and treatment of rotation Our shifted POD variant is imple-
mented in python and the shifts are realized via the module ndimage. Furthermore, only rectan-
gular computational domains are taken into account in the present work. For the translation, the
domain is assumed to be periodic and the shift is wrapped around, i.e., the information that comes
out of the domain on one side can be stored on the other side.

The implementation of rotation is more complicated, as the data stored in the corners of the
domain travels out and there is no obvious way as to where to store it, see Fig. 1a. Therefore,
before the computation, the domain has to be extended and padded with zeros, see Fig. 1b. This
approach increases the computational costs of SVD; however, no data is lost, and the added zeros
do not affect the singular value decay in any way.

Considering only 2D cases and taking into account that the axis of rotation does not have
to be equivalent with the center of the domain, the extended domain is square and its length is
calculated as

Lnew = 2
√

(W/2 + ∆x)2 + (L/2 + ∆y)2, (5)

where W and L is the width and the length of the original domain, respectively, and ∆x and ∆y

the distance between the center of the domain and the axis of rotation along the x and y axis,
respectively, see Fig. 1c. For the case of multiple frames with different values of ∆x and ∆y, the
maximum value is used.

Projection methods and ANN interpolation as a data-driven alternative The general
aim of MOR is not to merely construct Y ℓ as an approximation of Y , but to obtain a low-
dimensional surrogate for (2), i.e., to construct a mapping ηℓ : I → Rℓ, ℓ ≪ m. Usually, the
surrogate is assumed to be in the form

η̇ℓ = Aℓηℓ + f ℓ(t, ηℓ), ∀ t ∈ (0, T ], ηℓ(0) = ηℓ0, (6)
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where Aℓ ∈ Rℓ×ℓ. The matrix Aℓ and the system non-linearities f ℓ(t, yℓ) are commonly found via
the Galerkin projection as

Aℓ =
(
Ψℓ
)T
AΨℓ, f ℓ(t, yℓ) = (Ψℓ)Tb(t,Ψℓηℓ), yℓ(0) = (Ψℓ)Ty0, (7)

where Ψℓ ∈ Rm×ℓ is the projector obtained for example from POD (3).
The above outlined approach is not applicable for Y ℓ obtained via the shifted POD (4). In

particular, sPOD provides one projector for each frame of reference taken into account, Ψℓk
k , k =

1, . . . , Nf . Furthermore, let us recall that our full order model correponds to Eulerian-Lagrangian
description of particle-laden flows. The flow is described in the Eulerian framework and for an
incompressible Newtonian fluid, its governing equations are

∂u

∂t
+∇ · (u⊗ u)−∇ · (ν∇u) = −∇p̃+ s

∇ · u = 0
(8)

where u is the velocity, p̃ kinematic pressure, ν the fluid viscosity and s is an immersed-boundary
induced source term, for details see [14]. The particles {Bi}NB

i=1 are modeled within the Lagrangian
framework, i.e., at any given time, each body is defined by its own system of six ordinary differential
equations. For the particular body Bi, the equations are

mi
d2xi

dt2
=

Nf∑
j=1

f j
i , Ii

dωi

dt
=

Nf∑
j=1

tji , (9)

where mi and xi are the mass and center of Bi, respectively. Furthermore, ωi is the body an-
gular velocity and Ii is the matrix of its inertial moments. The sums on the right-hand sides of
equations (9) represent, in order, all the forces f and torques t acting on Bi.

While the system (8) can be converted into (2), the equations (9) cannot. The combination of
restrictions imposed by replacing POD by sPOD and the ones enforced by the FOM structure (8)
and (9) have led us to replace the standard projection methods by interpolation via artificial
neural networks (ANN). The resulting framework is called sPODIANN (shifted Proper Orthogonal
Decomposition with Interpolation via Artificial Neural Networks).

sPODIANN framework The general architecture of the sPODIANN framework was intro-
duced in [13]. Its fundamental working principles are as follows. First, during the offline stage,
sPOD is applied on the snapshot matrix, yielding Ψℓk

k and Hℓk
k , k = 1, . . . , Nf . The times t and

the time-dependent amplitudes Hℓk
k for each frame are used as training data for an ANN, which

produces the sought time-continuous surrogate η̃ℓ(t). In the online stage, η̃ℓ(t) is provided by
the trained ANN. If the approximation of the full rank solution is required, it is obtained by
substituting η̃ℓ(t) into (4) and applying inverse transport operators T −∆t

k , k = 1, . . . , Nf .

Note that this method is no longer purely data-driven – either the operators T ∆t
k , or at least

their discrete versions T∆t
k , have to be known a-priori. If only the discrete versions are known,

another ANN needs to be utilized to produce a time-continuous approximation T̃ ∆t
k . Further-

more, the operators are required to be invertible up to an interpolation error and for the case of
parametrized system, also continuous with respect to the parameters.

3 Examples

The applicability of the sPODIANN framework was already illustrated on three numerical examples
in our previous contribution in [13]. Here, we show two other examples to demonstrate the two
major improvements that have been presented in this work. The first one is a case with two discs
freely falling through a domain, where only the discrete versions of the transport operators were
known; therefore, another ANN was used to obtain their continuous approximation. The second
example is a case with two discs circling through a domain on prescribed circular trajectories. This
model was used to illustrate the framework extension for systems with rotation.

Both the systems were simulated using a CFD-DEM solver for particle-laden flows by Isoz et al.
[14]. In this solver, the positions of the particles are prescribed via an indicator field λ, λ = 0 for
cells inside the fluid, λ = 1 for cells inside the solid body and λ ∈ (0; 1) for cells containing the
solid-fluid boundary, with the exact value of λ depending on the percentage of the cell inside the
solid.
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Figure 2: Two falling discs, λ (a) singular value decay for POD and both frames of sPOD, (b) slice
of the λ field at W/2 in FOM, PODIANN and sPODIANN reconstruction, (c) – (e) qualitative
view of the λ field at t = 0.2 for FOM, PODIANN and sPODIANN, respectively.
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Figure 3: Two falling discs, velocity (a) singular value decay for POD and both frames of sPOD,
(b) comparison of time evolution of the global relative error between ROM and FOM, (c) – (e)
qualitative view of the velocity field at t = 0.15 for FOM, PODIANN and sPODIANN, respectively,
(f) – (h) qualitative view of the velocity field at t = 0.3 for FOM, PODIANN and sPODIANN,
respectively.
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Falling spheres The first example is a system with two discs of different densities settling in a
rectangular domain, L = 0.46L,W = 0.1L. The domain consists of 30 000 FVM cells and the FOM
was prepared based on 175 snapshots. The domain is filled with fluid of density ρf = 1000ML−3,
while the densities of the discs are ρ1 = 2500ML−3 and ρ2 = 3625ML−3.

The movements of the discs are driven by gravity g and stem from the coupled fluid-solid
interactions. As such, they are not known a-priori. However, the CFD-DEM solver provides us
with information about the positions of the discs mass centers in discrete time steps, so the discrete
versions of the shifts are of the form T∆t

k , ∆t
k = rk(t) − rk(0). The continuous approximations

T̃ ∆t
k are obtained using an ANN.
In Fig. 2 we present MOR of the λ field. As seen in Fig. 2a, the singular value decay for POD

is extremely slow. On the other hand, sPOD is able to sort the data into two co-moving frames
and in those it only needs two modes until it hits machine precision. Qualitatively, the POD-based
reconstruction suffers from the so-called staircase problem, i.e., non-physical oscillations appearing
instead of the traveling structures. See a slice through the λ field at W/2 in Fig. 2b, where
oscillations were present even though 20 POD modes were used. Reconstruction using sPODIANN
has no such deficiencies and produces satisfactory results using a single mode for each frame (2
modes in total). See the qualitative comparison of the λ fields shown in Fig. 2c, d and e.

The case of velocity field is more complicated. The velocity of the discs gradually increases,
until at one point von Kármán vortices begin to shed. This qualitative change poses a problem for
both POD and sPOD. The singular value decay is again faster for sPOD (see Fig. 3a); however,
the global a-posteriori reconstruction error, calculated as

εR(t) =
1

m

m∑
k=1

|uk(t)− uℓ
k(t)|

maxm{|uk(t)|} −minm{|uk(t)|}
, (10)

where uk is the FOM value of velocity in a cell k and uℓ
k the ROM approximation, is comparable

for both methods – between 1.5 and 6 %, see Fig. 3b. At the beginning, PODIANN produces
non-physical oscillations, cf. Fig. 3c, d and e, but as the vortices begin to shed, the qualitative
results of PODIANN and sPODIANN become quite similar to each other. Still, the vortices are
more pronounced in the PODIANN reconstruction, see Fig. 3f, g and h.

Circling spheres The second case analysed is a model of two spheres moving through a square
domain of W = L = 0.2L along prescribed circular trajectories, the first one defined by S1 =
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Figure 4: Two circling spheres, λ (a) singular value decay for POD and both sPOD frames, (b) slice
of the λ field along the purple circle in (c) for FOM, PODIANN and sPODIANN reconstruction,
(c) – (e) λ field at t = 1.42 for FOM, PODIANN and sPODIANN, respectively.
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Figure 5: Two circling spheres, velocity (a) slice of the velocity field along the purple circle in (b)
for FOM, PODIANN and sPODIANN reconstruction, (b) – (d) components of the velocity field
at t = 1.42 for FOM, PODIANN and sPODIANN, respectively. Note the areas with the most
distinct improvement of sPODIANN vs. PODIANN in black rectangles.

(0.15, 0.15), r1 = 0.02L, ω1 = 1.2πT−1, the second one by S2 = (0.05, 0.05), r2 = 0.012m, ω2 =
2π s−1. Note that the linear velocity is identical for both spheres, as is the Reynolds number,
Re = 0.6. The domain consists of 230 400 FVM cells and the analysis was performed on 800
snapshots.

In Fig. 4, see an analysis of the λ field. The singular value decay is again significantly faster for
sPOD. As in the case with falling discs, POD produces non-physical oscillations, this time plotted
in Fig. 4b along the purple circle in Fig. 4c. For the qualitative comparison of FOM, PODIANN
reconstruction using the first 24 modes and sPODIANN reconstruction using one mode for each
frame, see Fig. 4c, d and e.

In Fig. 5, we present an analysis of the velocity field. The PODIANN reconstruction was
prepared using the first 12 modes and the sPODIANN one using the first two modes for each
frame (4 in total). Quantitative results are comparable, but sPOD produces better qualitative
results, see a slice through velocity field in Fig. 5a made along along the circle in Fig. 5b. In
Fig. 5b, c and d, see the qualitative view of the velocity components, where sPOD is able to better
capture some of the finer structures highlighted by black rectangles.

4 Conclusion

In this contribution, we have extended our work on a framework combining shifted proper orthogo-
nal decomposition with interpolation via artificial neural networks (sPODIANN). The shifted POD
applies transport operators on the data and allows for siginificantly better dimensionality reduction
of transport dominated systems, while the artificial neural networks (ANNs) make it possible to
construct time-continuous reduced order models even for systems where the structure of the full
order model is not suitable for standard MOR approaches, such as particle-laden flows. We have
improved the framework and its treatment of general transport operators. By adding another in-
terpolating ANN, we are now able to reduce even systems, where only the discrete analogues of the
transport operators are known. In addition, the method is now able to treat systems with rotation
more efficiently when the domain is extended beforehand. These improvements were illustrated on
two CFD-DEM systems, where sPODIANN outperformed PODIANN (analogous method without
shifts) in both cases.
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