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Abstract

The research of fluid-structure interaction (FSI) problems is a continuously growing field. We
present a numerical solution method for viscoelastic FSI problems employing the arbitrary
Lagrangian Eulerian framework. We derive a monolithic variational formulation which allows
a robust solution with Newton’s method. Temporal discretization is based on the shifted
Crank-Nicholson scheme and spatial discretization is done using the finite element method.
We validate the numerical implementation on well-known benchmark problems and perform
simulations similar to a recent experiment in the literature on a human eye geometry.
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1 Introduction

In this work we consider the interaction between a viscoelastic fluid, modelled by a Burgers-type
equation and a hyperelastic solid. To this end we first state the fluid and structure equations in
their usual frameworks. Then we derive a monolithic variational formulation of the viscoelastic FSI
problem in the arbitrary Lagrangian Eulerian (ALE) framework and summarize the necessary steps
for the discretization in time and space. Furthermore we state the interface conditions and the
equation for the fluid displacement. We validate the implementation on well-known benchmark
problems for Newtonian and viscoelastic FSI. Finally we apply the derived solution method to
ophthalmology. We analyse the interaction of the viscoelastic vitreous with its surrounding elastic
structures. Given a prescribed displacement on the boundary of the structure we compare the
resulting stress distribution in the vitreous for healthy and pathological eyes.

2 Modelling

First we state the fluid and solid equations in their usual framework. The fluid equations are
commonly formulated in Eulerian coordinates. The Burgers-type model has the following form
([1])

ρf∂tvf + ρf (vf · ∇)vf − divT = 0 in Ωf , t ∈ I
divvf = 0 in Ωf , t ∈ I

O
B1 +

µ1

ν1
(B1 − I) = 0 in Ωf , t ∈ I

O
B2 +

µ2

ν2
(B2 − I) = 0 in Ωf , t ∈ I

with the Cauchy stress tensor

T = −pfI + ρfν3(∇vf +∇vTf ) + µ1(B1 − I) + µ2(B2 − I) (1)

and the upper convected Oldroyd derivative

O
S:= ∂tS + (v · ∇)S − (∇v)S − S(∇v)T .

Here Ωf ∈ Rn, n = 2, 3 denotes the fluid domain, vf the velocity of the fluid, ρf its density, pf
the pressure and I = (0, T ], T > 0 is the time interval. In addition to viscoelastic fluids we study
the Newtonian Navier-Stokes equations which are obtained by dropping the terms involving the
tensor-valued unknowns B1 and B2.
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Next we state the equations for the elastic structure. Let Ω̂s be the structure domain, ûs the
displacement, ρ̂s the density and f̂ an external force. Conservation of momentum in the Lagrangian
framework reads

ρ̂s∂
2
t ûs − d̂iv(Π̂) = ρ̂sf̂ in Ω̂s, t ∈ I

with the first Piola-Kirchhoff stress tensor Π̂.
A simple example for a compressible nonlinear elastic solid is the Saint-Venant-Kirchhoff

(STVK) material which is defined by

Π̂ := F̂ (2µÊ + λtr(Ê)Î) (2)

with Ê := 1
2 (F̂T F̂ − Î) and F̂ := Î + ∇̂ûs. Here λ and µ are the first and second Lamé constants.

For the application to the human eye in Section 4.3 we use the following strain-energy function,
which was introduced in [2] and used for the sclera and lens in [3]:

Ŵ =
1

2
µ(Ĵ−2/3trĈ − 3) +

1

2
κ(lnĴ)2

with the right Cauchy-Green tensor Ĉ = F̂T F̂ and Ĵ = detF̂ . This yields for the Piola-Kirchhoff
tensor

Π̂ =
∂Ŵ

∂F̂
= µĴ−2/3

(
F̂ − 1

3
tr(Ĉ)F̂−T

)
+ κlnĴ F̂−T . (3)

The fluid and structure equations have to be supplemented with appropriate initial and boundary
conditions.

Using a mixed formulation for the structure equations with v̂s = ∂tûs and combining the fluid
and structure equations we obtain the following viscoelastic FSI problem:

ρf∂tvf + ρf (vf · ∇)vf − divT = ρff in Ωf , t ∈ I
divvf = 0 in Ωf , t ∈ I

∂tB1 + (vf · ∇)B1 − (∇vf )B1 −B1(∇vf )T +
µ1

ν1
(B1 − I) = 0 in Ωf , t ∈ I

∂tB2 + (vf · ∇)B2 − (∇vf )B2 −B2(∇vf )T +
µ2

ν2
(B2 − I) = 0 in Ωf , t ∈ I

ρ̂s∂tv̂s − d̂iv(Π̂) = ρ̂sf̂s in Ω̂s, t ∈ I
ρ̂s(∂tûs − v̂s) = 0 in Ω̂s, t ∈ I

with the stress tensors defined as in equation (1) and (2) or (3) depending on the chosen mate-
rial. This strong form has to be supplemented with appropriate initial, boundary and interface
conditions. Here the fluid equations are formulated on moving domains in Eulerian coordinates,
while the structure equations are formulated in the Lagrangian framework. In the next chapter we
derive the variational formulation on fixed domains employing the ALE transformation.

3 Discretization

In the following we state the variational formulation for the viscoelastic FSI problem using the ALE
framework [4]. The PDE for the movement of the fluid mesh is a standard harmonic extension in
the domain Ω̂f . The interface conditions are continuity of the velocities, displacements and normal
stresses. We define the following function spaces

Ŵf := H1(Ω̂f )n×n,

V̂ n,0
f,v̂ := {v̂f ∈ H1

0 (Ω̂f )n : v̂f = v̂s on Γ̂i},

V̂ n,0
f,û := {ûf ∈ H1

0 (Ω̂f )n : ûf = ûs on Γ̂i},

V̂ n,0

f,Γ̂i
:= {ψ̂f ∈ H1

0 (Ω̂f )n : ψ̂f = ψ̂s on Γ̂i},

V̂ n,0

f,û,Γ̂i
:= {ψ̂f ∈ H1

0 (Ω̂f )n : ψ̂f = 0 on Γ̂i}.

Then the variational formulation reads:
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Problem 1 Find {v̂f , v̂s, ûf , ûs, p̂f , B̂1, B̂2} ∈ {v̂Df + V̂ n,0
f,v̂ } × H1(Ω̂s)

n × {ûDf + V̂ n,0
f,û } × {ûDs +

H1
0 (Ω̂s)

n} × L2(Ω̂f ) \ R × Ŵf × Ŵf such that v̂f (0) = v̂0
f , v̂s(0) = v̂0

s , ûf (0) = û0
f , ûs(0) = û0

s,

B̂1(0) = Î, B̂2(0) = Î and for almost all time steps t ∈ I it holds:(
Ĵ ρ̂f∂tv̂f , ψ̂

v
)

Ω̂f
+
(
ρ̂f Ĵ(F̂−1(v̂f − ∂tûf ) · ∇̂)v̂f , ψ̂

v
)

Ω̂f

+
(
ĴT̂F̂−T , ∇̂ψ̂v

)
Ω̂f
−
(
ρ̂f Ĵ f̂f , ψ̂

v
)

Ω̂f
= 0 ∀ψ̂v ∈ V̂ n,0

f,Γ̂i
,(

Ĵ

(
∂tB̂1 + (∇̂B̂1)

(
F̂−1(v̂f − ∂tûf )

)
− (∇̂v̂f )F̂−1B̂1 − B̂1F̂

−T (∇̂v̂f )T

+
µ1

ν1
(B̂1 − Î)

)
, ψ̂B1

)
Ω̂f

= 0 ∀ψ̂B1 ∈ Ŵf ,(
Ĵ

(
∂tB̂2 + (∇̂B̂2)

(
F̂−1(v̂f − ∂tûf )

)
− (∇̂v̂f )F̂−1B̂2 − B̂2F̂

−T (∇̂v̂f )T

+
µ2

ν2
(B̂2 − Î)

)
, ψ̂B2

)
Ω̂f

= 0 ∀ψ̂B2 ∈ Ŵf ,

(ρ̂s∂tv̂s, ψ̂
v)Ω̂s

+ (Π̂, ∇̂ψ̂v)Ω̂s
− 〈Π̂n̂s, ψ̂v〉Γ̂N − (ρ̂f̂s, ψ̂

v)Ω̂s
= 0 ∀ψ̂v ∈ H1

0 (Ω̂s)
n,

ρ̂s

(
∂tûs − v̂s, ψ̂u

)
Ω̂s

= 0 ∀ψ̂u ∈ H1(Ω̂s)
n,(

d̂iv(Ĵ F̂−1v̂f ), ψ̂p
)

Ω̂f
= 0 ∀ψ̂p ∈ L2(Ω̂f ) \ R,(

α̂u∇̂ûf , ∇̂ψ̂u
)

Ω̂f
= 0 ∀ψ̂u ∈ V̂ n,0

f,û,Γ̂i

with
T̂ = −p̂f Î + ρ̂fν3

(
∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf

)
+ µ1

(
B̂1 − Î

)
+ µ2

(
B̂2 − Î

)
.

Here (·, ·)Ω̂f
is the usual L2(Ω̂f ) product. For details on the derivation of the variational formulation

using the Navier-Stokes equations we refer to [5] and [6]. The extension to viscoelastic fluids works
analogously.

Temporal discretization is done using the shifted Crank-Nicholson scheme [7]. For the finite
elements we choose Q2 elements for the velocity, displacement and viscoelastic tensors and P disc

1

elements for the pressure. The combination of velocity and pressure space satisfies the inf-sup
condition. For the linearization we use Newton’s method with exact Jacobians.

4 Numerical Results

The numerical simulations are realized in deal.ii [8] and are based on the FSI implementation in
[9].

4.1 Stationary viscoelastic FSI

We start by validating the viscoelastic FSI implementation on well-known benchmarks. First we
study the stationary FSI1 benchmark from [10] using the Burgers model instead of the Navier-
Stokes equations for the fluid flow. The benchmark consists of a channel with an inflow from the
left and a circular obstacle. In addition there is an elastic beam attached to the obstacle (Figure
1). The parabolic inflow velocity on Γ̂in is

v(0, y) = (1.5v̄
y(0.41− y)(

0.41
2

)2 , 0)

with v̄ = 0.2. For the viscoelastic tensors the boundary condition has to be chosen accordingly
on Γ̂i (see [11]). Furthermore we have the no slip condition for the velocity on Γ̂wall and the do-
nothing condition on Γ̂out. For the structure we use the STVK material (2). Material parameters
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are chosen as

ρs = ρf = 1000, ν3 = 10−3, µs = 0.5 · 106, λs = 2 · 106, µ1 = µ2 = 25, ν1 = ν2 = 0.125.

This setup is equivalent to the more common Oldroyd-B model with µ = 50 and ν = 0.25.
The drag and lift coefficients are given by

Jdrag :=

∫
Ŝ

(ĴT̂F̂−T )n̂f · e1 dŝ

Jlift :=

∫
Ŝ

(ĴT̂F̂−T )n̂f · e2 dŝ

with Ŝ := Γ̂flag ∪ (Γ̂circle \ Γ̂base).

Figure 1: Setup for the FSI benchmarks.

Figure 2 shows the convergence of the drag and lift. The convergence order for global refinement
is not optimal because of the limited regularity due to the reentrant corner of the beam [6]. In
addition to global refinement we use the dual-weighted residual method from [12] similar to the FSI
approach in [5] for Newtonian fluids. This adaptive refinement strategy yields a faster convergence
in the drag and lift functionals. Due to the lack of knowledge of the exact reference values the
convergence in the last step of the adaptive refinement might be overestimated.
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Figure 2: Convergence of the drag (left) and the lift (right) for the viscoelastic FSI1 benchmark.

4.2 Time dependent viscoelastic FSI

Before studying time dependent viscoelastic FSI we validate the Newtonian FSI implementation on
the non-stationary FSI3 benchmark introduced in [10]. The setup is similar to the FSI1 benchmark.
The parabolic inflow on Γ̂in is

v(0, y) = (1.5v̄
y(0.41− y)(

0.41
2

)2 , 0)
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with a smooth increase in the beginning

v(t, 0, y) =

{
v(0, y)

1−cos(π2 t)

2 if t < 2.0

v(0, y) else.

The parameters are chosen as

ρf = ρs = 103, ν3 = 10−3, µs = 2 · 106, λs = 8 · 106

and v̄ = 2.0. This yields a Reynolds number of Re = 200. The quantities of interest are the
displacement at the point A = (0.6, 0.2) (see Figure 1), the drag and the lift.

Table 1 shows the computed values for three different mesh sizes and two different timesteps.
The results are in very good agreement with the available literature [10], [13].

Table 1: Results for the quantities of interest on three different mesh levels with 18928, 75712 and
302848 degrees of freedom with different timestep size ∆t for FSI3 with Navier-Stokes.

dofs ∆t x-disp ·10−3 y-disp ·10−3 drag lift
18928 0.001 -2.82 ± 2.67 1.50 ± 34.24 451.56 ± 22.75 2.11 ± 157.39
75712 0.001 -2.80 ± 2.64 1.47 ± 34.37 457.49 ± 25.35 2.23 ± 155.89
302848 0.001 -2.85 ± 2.69 1.47 ± 34.76 459.57 ± 26.86 2.14 ± 158.90
18928 0.0005 -2.83 ± 2.67 1.50 ± 34.24 451.45 ± 22.66 2.14 ± 156.75
75712 0.0005 -2.80 ± 2.64 1.47 ± 34.36 457.38 ± 25.28 2.32 ± 155.07
302848 0.0005 -2.85 ± 2.69 1.46 ± 34.75 459.47 ± 26.80 2.23 ± 157.98
ref. [13] -2.88 ± 2.72 1.47 ± 34.99 460.5 ± 27.74 2.50 ± 153.9

Next we study the FSI3 benchmark using the Burgers model. The parameters are chosen as in
the previous example with the additional parameters for the Burgers model chosen as µ1 = µ2 = 50
and ν1 = ν2 = 0.25. Figure 3 shows the velocity magnitude in the current fluid domain Ωf at three
different times.

Figure 3: Velocity magnitude in Ωf at three different times for the viscoelastic FSI3 case

Figure 4 shows the plots for the quantities of interest in the time interval [9, 10]. The mean
for the drag is higher and the amplitude lower than in the Navier-Stokes case. For the lift the
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mean and amplitude are smaller than in the Navier-Stokes case. The y-displacement shows a
similar behaviour to the lift in comparison to the Navier-Stokes variant. Finally Table 2 shows the
convergence of the mean and amplitude of the quantities of interest for different refinement levels
and timestep sizes. The frequencies for the viscoelastic and Newtonian case are very similar: For
the viscoelastic case the frequencies are f1 = 10.84 and f2 = 5.42 on the finest mesh. For the
Navier-Stokes case the frequencies on the finest mesh are f1 = 10.99 f2 = 5.49.
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Figure 4: Plots of the four quantities of interest over time for the viscoelastic FSI3 case

Table 2: Results for the quantities of interest on three different mesh levels with 7543, 30172 and
120688 degrees of freedom with different timestep size ∆t for the viscoelastic FSI3 case.

dofs ∆t x-disp ·10−3 y-disp ·10−3 drag lift
10354 0.001 -1.78 ± 1.73 1.21 ± 27.52 513.14 ± 15.45 6.76 ± 154.57
41416 0.001 -1.13 ± 1.07 1.57 ± 21.31 509.86 ± 10.33 0.42 ± 115.75
165664 0.001 -1.25 ± 1.18 1.53 ± 22.53 513.63 ± 12.29 0.69 ± 119.61
10354 0.0005 -1.79 ± 1.73 1.20 ± 27.53 513.29 ± 15.38 6.80 ± 154.05
41416 0.0005 -1.13 ± 1.07 1.57 ± 21.28 509.65 ± 10.25 0.44 ± 115.46
165664 0.0005 -1.24 ± 1.18 1.53 ± 22.48 513.29 ± 12.19 0.75 ± 119.14

4.3 Applications in ophthalmology

Finally we consider applications in ophthalmology. The setup is similar to a recent experiment on
bovine eyes [14]. We use a simplified human eye geometry cut in the middle of the eye similar to
the experiment (see Figure 5). The blue part is the fluid domain while the grey and red part are the
elastic structures. The eye is fixed on the left and pulled to the right leading to a deformation of
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the eye. Similar simulations were performed on a bovine eye mesh using low-order finite elements
to reduce the numerical costs in [15]. The displacement magnitude can be seen in Figure 5. Figure
6 shows the norm of the average stress per cell for a healthy viscoelastic vitreous on the left and on
the right for a pathological vitreous using the Navier-Stokes equations as fluid model. The stress
in the healthy eye is higher by almost a factor of eight. This is an interesting result since some
medical diseases in the eye are possibly linked to the stress distribution in the vitreous.

Figure 5: Left: mesh with 11568 cells with 1175422 degrees of freedom (304053 (velocity) +304053
(displacement) +20704 (pressure) +546612 (viscoelastic tensors)). Right: displacement magnitude.

Figure 6: Stress tensor in the vitreous for Burgers (left) and Navier-Stokes (right) sliced in the
middle for visualization purposes.

5 Conclusion

In this work we validated our viscoelastic FSI implementation on two typical benchmark problems
by studying the convergence for different functionals of interest for different mesh and timestep
sizes. The simulations showed that the numerical approach for viscoelastic fluids in the ALE
framework works well for problems with large deformations and high Reynolds number. The
simulations showed that for this set of parameters for µ1, µ2, ν1 and ν2 the viscoelasticity has
a big impact on the quantities of interest in comparison to the Navier-Stokes case. Nevertheless
investigation of different sets of parameters might be interesting. Due to the fast movement of the
elastic beam it might also be necessary to study stabilization methods.

Furthermore we performed simulations on a human eye geometry to study the behaviour of the
vitreous for healthy and pathological eyes. We observed big differences in the stress distribution
in the vitreous with a higher stress magnitude in the healthy case.
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