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Abstract

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary
can be described by the nonlinear Navier-Stokes system (N). This description corresponds to
the so-called Eulerian approach. We develop a new approximation method for (N) in both
the stationary and the nonstationary case by a suitable coupling of the Eulerian and the
Lagrangian representation of the flow, where the latter is defined by the trajectories of the
particles of the fluid. The method leads to a sequence of uniquely determined approximate
solutions with a high degree of regularity, which contains a convergent subsequence with limit
function v such that v is a weak solution on (N).
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1 Introduction

For the description of fluid flow there are in principle two approaches, the Eulerian approach and
the Lagrangian approach. The first one describes the flow by its velocity

v = (v1(t, x), v2(t, x), v3(t, x)) = v(t, x)

at time t in every point x = (x1, x2, x3) of the domain G containing the fluid. The second one uses
the trajectory x = (x1(t), x2(t), x3(t)) = x(t) = X(t, 0, x0) of a single particle of fluid, which at
initial time t = 0 is located at some point x0 ∈ G. The second approach is of great importance for
the numerical analysis and computation of fluid flow also involving different media with interfaces
[2, 3, 5, 8], while the first one has also often been used in connection with theoretical questions
[4, 6, 7, 9].

It is the aim of the present note to develop a new approximation method for the nonlinear Navier-
Stokes equations by coupling both the Lagrangian and the Eulerian approach. The method avoids
fixpoint considerations and leads to a sequence of approximate systems, whose solution is unique
and has a high degree of regularity, important at least for numerical purposes. Moreover, we can
show that our method allows the construction of global weak solutions of the Navier-Stokes equa-
tions (compare [2, 4] for a local theory): The sequence of approximate solutions has at least one
accumulation point satisfying the Navier-Stokes equations in a weak sense [6].

2 The Stationary Navier - Stokes Equations

We consider the stationary motion of a viscous incompressible fluid in a bounded domain G ⊂ R3

with a sufficiently smooth boundary S. Because for steady flow the streamlines and the trajectories
of the fluid particles coincide, both approaches mentioned above are correlated by the autonomous
system of characteristic ordinary differential equations

x′(t) = v(x(t)), x(0) = x0 ∈ G, (1)

which is an initial value problem for

t −→ x(t) = X(t, 0, x0) = X(t, x0)
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if the velocity field x −→ v(x) is known in G.

To determine the velocity, in the present case we have to solve the steady-state nonlinear equations

−ν∆v + v · ∇v + ∇p = F in G,

(2)

div v = 0 in G, v = 0 on S

of Navier-Stokes. Here x −→ p(x) is an unknown kinematic pressure function. The constant ν > 0
(kinematic viscosity) and the external force density F are given data. The incompressibility of the
fluid is expressed by div v = 0, and on the boundary S we require the no-slip condition v = 0.

3 The Lagrangian Approach

Let us start recalling some facts, which concern existence and uniqueness for the solution of the
initial value problem (1): If the function v belongs to the space C lip

0 (G) of vector fields being
Lipschitz continuous in the closure G = G ∪ S and vanishing on the boundary S, then for all
x0 ∈ G the solution

t −→ x(t) = X(t, x0)

is uniquely determined and exists for all t ∈ R (because v = 0 on the boundary S, the trajectories
remain in G for all times). Due to the uniqueness, the set of mappings

< = {X(t, ·) : G→ G| t ∈ R}

defines a commutative group of C1− diffeomorphisms on G. In particular, for t ∈ R the inverse
mapping X(t, ·)−1 of X(t, ·) is given by X(−t, ·), i.e.

X(t, ·) ◦ X(−t, ·) = X(t, X(−t, ·))
= X(t− t, ·) = X(0, ·) = id,

or, equivalently,
X(t, X(−t, x)) = x

for all x ∈ G. Moreover we obtain det∇X(t, x) = 1 if

v ∈ C lip
0,σ(G) = {u ∈ C lip

0 (G)|div u = 0},

in addition. This important measure preserving property implies

〈f, g〉 = 〈f ◦X(t, ·), g ◦X(t, ·)〉

for all functions f, g ∈ L2(G), where 〈·, ·〉 denotes the scalar product in L2(G).

4 The Eulerian Approach

Next let us consider the Navier-Stokes boundary value problem (2). It is well known that, given
F ∈ L2(G), there is at least one function v satisfying (2) in some weak sense [6]. To define such a
weak solution we need the space V (G), being the closure of C∞0,σ(G) (smooth divergence free vector

functions with compact support in G) with respect to the Dirichlet-norm ‖∇u‖ =
√
〈∇u, ∇u〉,

where we define

〈∇u, ∇v〉 =
3∑

i,j=1

〈Djui, Djvi〉.

Let us recall the following
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Definition 1 Let F ∈ L2(G) be given. A function v ∈ V (G) satisfying for all Φ ∈ C∞0,σ(G) the
identity

ν〈∇v, ∇Φ〉 − 〈v · ∇Φ, v〉 = 〈F, Φ〉 (3)

is called a weak solution of the Navier-Stokes equations (2), and (3) is called the weak form of (2).

For a suitable approximation of the nonlinear term let us keep in mind its physical deduction. It
is a convective term arising from the total or substantial derivative of the velocity vector v. Thus
it seems to be reasonable to use a total difference quotient for its approximation.

To do so, let v ∈ Clip0,σ(G) be given. Then for any ε ∈ R the mapping X(ε, ·) : G → G

and its inverse X(−ε, ·) are well defined. Consider for some u ∈ C1(G) (Cm(G) is the space of
continuous functions having continuous partial derivatives up to and including order m ∈ N in G)
and x ∈ G the one-sided Lagrangian difference quotients

Lε+ u(x) =
1

ε
[u(X(ε, ·)) − u(x)] ,

Lε− u(x) =
1

ε
[u(x) − u(X(−ε, ·))] ,

and the central Lagrangian difference quotient

Lε u(x) =
1

2

(
Lε+ u(x) + Lε− u(x)

)
. (4)

Since for sufficiently regular functions

Lε− u(x) −→ v(x) · ∇u(x)

and
Lε+ u(x) −→ v(x) · ∇u(x)

as ε→ 0, the above quotients can all be used for the approximation of the convective term v ·∇v.
There is, however, an important advantage of the central quotient (4) with respect to the conser-
vation of the energy:

Let v ∈ Clip0,σ(G) and u, w ∈ L2(G). Let X(ε, ·) and X(−ε, ·) denote the mappings constructed
from the solution of (1). Then, using the measure preserving property from above, we obtain only
for the central quotient the orthogonality relation

〈Lε u, u〉 = 0. (5)

5 The Stationary Approximate System

To establish an approximation procedure we assume that some approximate velocity field vn has
been found. To construct vn+1 we proceed as follows:

1) Construct Xn = X( 1
n , ·) and its inverse X−n = X(− 1

n , ·) from the initial value problem

x′(t) = vn(x(t)), x(0) = x0 ∈ G. (6)

2) Construct vn+1 and pn+1 from the boundary value problem

−ν∆vn+1 +
n

2
[vn+1 ◦Xn − vn+1 ◦X−n]+

+∇pn+1 = F in G,

div vn+1 = 0 in G,

vn+1 = 0 on S. (7)
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Concerning the existence and uniqueness for the solution of (6) and (7) we need the usual Sobolev
Hilbert spaces Hm(G), m ∈ N, which denote the closure of Cm(G) with respect to the norm
‖ · ‖Hm (see [1]). A main result is now stated in the following

Theorem 2 a) Assume vn ∈ H3(G) ∩ V (G) and F ∈ H1(G). Then for all x0 ∈ G the initial
value problem (6) is uniquely solvable, and the mappings

Xn : G→ G, X−n : G→ G

are measure preserving C1− diffeomorphisms in G.
Moreover, there is a uniquely determined solution

vn+1 ∈ H3(G) ∩ V (G), ∇pn+1 ∈ H1(G)

of the equations (7).
The velocity field vn+1 satisfies the energy equation ν‖∇vn+1‖2 = 〈F, vn+1〉.

b) Assume v0 ∈ H3(G) ∩ V (G) and F ∈ H1(G). Let (vn) denote the sequence of solutions
constructed in view of Part a). Then (vn) is bounded in V (G) i.e. ‖∇vn‖2 ≤ CG,F,ν for all
n ∈ N, where the constant CG,F,ν does not depend on n. Moreover, (vn) has an accumulation
point v ∈ V (G) satisfying (3), i.e. v is a weak solution of the Navier-Stokes equations (2).

6 The Nonstationary Navier - Stokes Equations

Let us consider now the motion of a nonstationary viscous incompressible fluid flow in a bounded
domain G ⊂ R3 with a sufficiently smooth boundary S. Without loss of generality, in this section
we assume conservative external forces and consider the following Navier-Stokes initial boundary
value problem:

Construct a velocity field v = v(t, x) und some pressure function p = p(t, x) as a solution of
the system

vt − ν∆v +∇p+ v · ∇v = 0
in G, t > 0,∇ · v = 0

v = 0 on S, t > 0,
v = v0 for t = 0.

(N)

Here v0 is a suitable prescribed initial velocity distribution.

The existence of a classical solution global in time of this problem without any smallness re-
striction on the data has not been proved up to now. Hence also a globally stable approximation
scheme does not exist for this system. In order to construct classically solvable equations, as in the
steady-state case, an approximation of the nonlinear convective term v · ∇v, which is responsable
for the non-global existence of the solution, by means of a Lagrangian difference quotients seems
to be reasonable.

In the following we show that the nonstationary Navier-Stokes system (N) can also be approx-
imated by means of Lagrangian differences. The resulting approximate system (Nε) is uniquely
solvable, its solution exists globally in time, has a high degree of regularity and satisfies the non-
stationary energy equation.

7 The Initial Value Problem

Let J be a compact time interval, and let ṽ ∈ C(J,H3(G) ∩ V (G)) be a given velocity field being
strongly H3- continuous. Consider the initial value problem

ẋ(t) = ṽ(t, x(t))
x(s) = x0

, (s, x0) ∈ J ×G (A)
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concerning the trajectory x(t) = X(t, s, x0) of a fluid particle, which at time t = s is located at
x0 in G. Due to well-known results on ordinary differential equations, as in the autonomous case,
the uniquely determined general solution X(t, s, x0) of (A) exists for all times, and the mapping

X(t, s, ·) : G→ G, t, s ∈ J

is a measure preserving diffeomorphism with inverse function

X−1 = X(s, t, ·).

As in the stationary case we now approximate the time dependent nonlinear convective term
v(t, x) · ∇v(t, x) by a central Lagrangian difference quotient as follows:

v(t, x) · ∇v(t0, x) ∼
∼ 1

2ε

(
v(t0, X(t+ ε, t, x))− v(t0 , X(t, t+ ε, x))

)
.

(8)

Here ∼ means that for a sufficiently regular function v the right hand side converges to the ex-
pression on the left hand side as ε→ 0.

The main advantage of the central quotient in (8), which we denote by

1

2ε
(v ◦X − v ◦X−1)

for abbreviation, is again the validity of an analogon to the orthogonality relation of Hopf [6]:

Using 〈·, ·〉 as L2(G)-scalar product Hopf obtains the global (in time) existence of weak solutions
to the Navier-Stokes system (N) due to the important orthogonality relation

(v · ∇v, v) = 0, v ∈ V (G).

Using the measure preserving property of the mapping X, we analogously obtain

1

2ε
(v ◦X − v ◦X−1, v) =

=
1

2ε

(
(v ◦X, v)− (v, v ◦X)

)
= 0,

which implies the validity of the energy equation for all sufficiently regular solutions of the approx-
imate system, if central Lagrangian differences instead of one-sided quotients are used.

8 Time Delay and Compatibility at Initial Time

To avoid fixed-point considerations for the solution of the regularized approximate system – the
velocity vector v as well as the mappings X are unknown – by means of a time delay we replace
v · ∇v by 1

2ε (v ◦X − v ◦X−1) with trajectories X constructed at earlier time points, where the
velocity v is known already.

To do so, on the given time interval [0, T ] we define a time grid by

tk = k · ε, k = 0, . . . , N ∈ N,

where ε := T
N > 0. Setting

Xk := X(tk, tk−1, x),

for t ∈ [tk, tk+1) we can use e.g. the approximation

v(t, x) · ∇v(t, x) ∼ 1

2ε
(v(t,Xk)− v(t,X−1k )). (9)
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To initiate this procedure we extend the initial value v0 continuously to a start function

vs ∈ C([−ε, 0], H3(G) ∩ V (G)).

Then, indeed, on the subintervals [tk, tk+1) we can successively construct the mappings Xk from
the given velocity field v and vice versa. Nevertheless, we do not obtain a global on [0, T ] existing
solution of a problem regularized by (9). This is due to a certain compatibility condition, which
always occurs in parabolic problems at the corner of the space time cylinder:
For the unique construction of the mapping Xk, if integer order Sobolev spaces are used, we need
a velocity field

v ∈ C([tk−1, tk], H3(G) ∩ V (G)),

i.e.
vt ∈ C([tk−1, tk], V (G)).

Using

P : L2(G)→ H(G) := C∞0,σ(G)
‖·‖

as orthogonal projection we obtain in particular the condition

vt(tk) = µP∆v(tk)− (10)

− 1

2ε
P
(

(v(tk, Xk)− v(tk, X
−1
k )
)
∈ V (G).

Due to v0 ∈ H3(G)∩V (G) we find that the right hand side of (10) is contained in H1(G)∩H(G),
only. Hence the condition vt(tk) ∈ V (G) implies in case of an approximation of the type (9) that
we have to impose the condition

µP∆v(tk)− (11)

− 1

2ε
P
(

(v(tk, Xk)− v(tk, X
−1
k )
)

= 0 on S.

9 The Approximate System (Nε)

Instead of a system regularized by (9) we consider

vt − µ∆v +∇p+ Zεv = 0
in G for t > 0,∇ · v = 0

v = 0 on S,

vt = f in G for t = 0,

(Nε)

where f ∈ V (G), and where for t ∈ [tk, tk+1]

Zεv(t, x) :=
1

2ε

(
(t− tk)(v(t,Xk)− v(t,X−1k ))+

+(tk+1 − t)(v(t,Xk−1)− v(t,X−1k−1))
)

is continuously defined on [0, T ].

In this case all compatibility conditions are satisfied: The condition for t = 0 can be fulfilled
following a hint of V. A. Solonnikov by prescribing vt(0) = f ∈ V (G) instead of v(0) = v0:

For a given function
vs ∈ C([−2ε,−ε], H3(G) ∩ V (G))

we solve the problem (A) and obtain the mapping X−1. Then we consider the stationary problem

νP∆v0 −
1

2ε
P (v0 ◦X−1 − v0 ◦X−1−1 ) = f,
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and obtain by well-known existence and regularity results a uniquely determined solution

v0 ∈ H3(G) ∩ V (G),

which, since functions in V (G) vanish on the boundary S, satisfies the required compatibility
condition (11). By linear interpolation between vs(−ε) and v0 we then obtain a start function

vs ∈ C([−2ε, 0], H3(G) ∩ V (G)).

Since the compatibility condition in all the following grid points tk are automatically satisfied due
to the continuity of the function

t→ Zεv(t),

we finally obtain, by successively constructing the mappings fom the velocity field v and vice versa,
the following result:

Theorem 3 Let [0, T ] be given and let f ∈ V (G) Then for every ε > 0 exists a uniquely determined
function

v ∈ C([0, T ], H3(G) ∩ V (G))

und a uniquely determined pressure gradient

∇p ∈ C([0, T ], H1(G))

as the solution of the system (Nε). For v holds on [0, T ] the energy equation

‖v(t)‖2 + 2ν

t∫
0

‖v(s)‖2 ds = ‖v0‖2,

and H3–Norm estimates can be constructed uniformly on [0, T ] depending on the data, T and ε.

References

[1] Adams, R. A.: Sobolev Spaces, Academic Press 2003.

[2] Constantin, P.: An Eulerian-Lagrangian Approach for Incompressible Fluids: Local Theory.
J. Amer. Math. Soc., vol. 14: (2001) pp. 263-278.

[3] Constantin, P.: An Eulerian-Lagrangian Approach to the Navier-Stokes Equations. Com.
Math. Phys., vol 216: (2001) pp. 663-686.
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