Topical Problems of Fluid Mechanics


logo UT logo CTU logo MIO Universite logo ERCOFTAC
Institute of Thermomechanics AS CR, v.v.i. CTU in Prague Faculty of Mech. Engineering Dept. Tech. Mathematics MIO Université du Sud Toulon Var - AMU - CNRS - IRD Czech Pilot centre ERCOFTAC
Geometrically Realistic Macro-Scale Model for Multi-Scale Simulations of Catalytic Filters for Automotive Gas Aftertreatment

Hlavatý T., Isoz M., Plachá M., Šourek M., Koćí P.

Abstract:
This paper is part of a research focused on simulating (i) the catalytic conversion of environment endangering gases, and (ii) trapping of the particulate matter in automotive exhaust gas aftertreatment. Historically, the catalytic conversion and the filtration of soot particles were performed in independent devices. However, recent trend is to combine the catalytic converter and soot filter into a single device, the catalytic filter. Compared to the standard two-device system, the catalytic filter is more compact and has lower heat losses. Nevertheless, it is highly sensitive to the catalyst distribution. This study extends our recently developed methodology for pore-scale simulations of flow, diffusion and reaction in the coated catalytic filters. The extension consists of enabling data transfer from macro- to pore-scale models by preparing geometrically realistic macro-scale CFD simulations. The simulation geometry is based on XRT scans of real-life catalytic filters. The flow data from the newly developed macro-scale model are mapped as boundary conditions into the pore-scale simulations and used to improve the estimates of the catalytic filter filtration efficiency.

Keywords:
CFD, Catalytic lter, OpenFOAM
Fulltext: PDF
DOI: https://doi.org/10.14311/TPFM.2020.011
In Proceedings Topical Problems of Fluid Mechanics 2020, Prague, 2020 Edited by David Šimurda and Tomáš Bodnár, pp. 82-89
ISBN 978-80-87012-74-1 (Print)
ISSN 2336-5781 (Print)
imce   Powered by Imce 3.0  © 2014, Pavel Formánek, Institute of Thermomechanics AS CR, v.v.i. [generated: 0.1506s]